Sustainable Agriculture and Water Resources
Climate change and its subsequent implication of water availability is having a major impact on the crop production globally. Feed a growing population while minimizing water consummation for agriculture are twin challenges directly related to food security in many parts of the world. Water productivity is considered as a robust measure of the ability of agricultural systems to convert water to food. Focusing on two test sites, one in Europe and one in China, the proposed project will try to explore the methodology using remote sensing to generate water productivity and to examine variability of this measure in two different geographic locations, for different crop types or different cropping conditions. The research is planned in four steps involving the crop distribution mapping, crop productivity prediction, estimation of water use through evapotranspiration and water productivity mapping. The output of this proposed project would contribute to elucidate the driving factors for water productivity and ultimately improve the agricultural water management in drought threatening regions. The proposed research takes advantage of outcome from Dragon 3 (crop yield estimation) and Dragon 2&4 (crop distribution mapping) programmes, adding a dimension of water use efficiency in the theme of food security, contributing hopefully the development of the current ESA’s Food Security Thematic Exploitation Platform (FS-TEP, https://foodsecurity-tep.net/). Finally, it is worth to underline the multidisciplinary character of this proposal, which encompasses several the Dragon 5 program’s topics or sub-topics including food security, sustainable water use, crop monitoring as well as climate change. The deliverables consist of the databases for crop productivity maps, water use maps and water productivity maps relating to two study regions, as well as the presentations at the Dragon symposia and related publications acknowledging the contribution of Dragon Programmes. The proposed project would be partially supported by H2020 SIEUSOIL project co-funded by EU and Chinese MOST.